Vertex Operator Algebras Associated to TypeGAffine Lie Algebras II
نویسندگان
چکیده
منابع مشابه
Vertex operator algebras associated to type G affine Lie algebras
Article history: Received 15 November 2010 Available online 11 May 2011 Communicated by Masaki Kashiwara
متن کاملIntroduction to vertex operator algebras II
This is the second of three lectures on introduction to vertex operator algebras. In this lecture, we shall continue Professor Dong’s lecture to present more fundamental properties of vertex operator algebras. From the mathematical point of view, a vertex operator algebra formally resembles a Lie algebra because the Jacobi identity is used as one of the main axioms. For the Lie algebra aspect o...
متن کاملVertex Lie algebras, vertex Poisson algebras and vertex algebras
The notions of vertex Lie algebra and vertex Poisson algebra are presented and connections among vertex Lie algebras, vertex Poisson algebras and vertex algebras are discussed.
متن کاملTo Vertex Operator Algebras
In this exposition, we continue the discussions of Dong [D2] and Li [L]. We shall prove an S3-symmetry of the Jacobi identity, construct the contragredient module for a module for a vertex operator algebra and apply these to the construction of the vertex operator map for the moonshine module. We shall introduce the notions of intertwining operator, fusion rule and Verlinde algebra. We shall al...
متن کاملBimodules associated to vertex operator algebras
Let V be a vertex operator algebra and m,n ≥ 0. We construct an An(V )Am(V )-bimodule An,m(V ) which determines the action of V from the level m subspace to level n subspace of an admissible V -module. We show how to use An,m(V ) to construct naturally admissible V -modules from Am(V )-modules. We also determine the structure of An,m(V ) when V is rational. 2000MSC:17B69
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Algebra
سال: 2013
ISSN: 0092-7872,1532-4125
DOI: 10.1080/00927872.2012.725261